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Abstract

Human variability is a very important factor considered in human health risk assessment for 

protecting sensitive populations from chemical exposure. Traditionally, to account for this 

variability, an interhuman uncertainty factor is applied to lower the exposure limit. However, using 

a fixed uncertainty factor rather than probabilistically accounting for human variability can hardly 

support probabilistic risk assessment advocated by a number of researchers; new methods are 

needed to probabilistically quantify human population variability. We propose a Bayesian 

hierarchical model to quantify variability among different populations. This approach jointly 

characterizes the distribution of risk at background exposure and the sensitivity of response to 

exposure, which are commonly represented by model parameters. We demonstrate, through both 

an application to real data and a simulation study, that using the proposed hierarchical structure 

adequately characterizes variability across different populations.
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1. INTRODUCTION

To quantify health risk from chemical exposure faced by sensitive populations, human 

variability is an important factor to consider in human health risk assessment. Traditionally, 

to account for this variability, an interhuman uncertainty factor (up to 10) is applied to the 

100(1 – α)% lower bound of the benchmark dose (BMD). The BMD is the dose that 

produces a predetermined change in response of an adverse effect compared to background, 

and is used as a point of departure in risk assessment when estimating an oral reference dose 

(RfD) or inhalation reference concentration (RfC). A number of researchers have attempted 

to develop general quantitative methods or conceptual models to describe noncancer risk 

probabilistically(1–5) As agencies such as the U.S. Environmental Protection Agency (US 
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EPA) move toward probabilistic risk assessment,(6–8) new methods are needed to 

probabilistically quantify human variability.

We propose a Bayesian hierarchical model to quantify human variability. This is 

accomplished by jointly characterizing the distribution of risk at background exposure as 

well as the sensitivity of response to exposure using exposure-response data obtained from 

various populations (i.e., cohorts). Here, we define “population” as a cohort of individuals 

with different characteristics (e.g., gender, age, exposure, etc.) in a particular study. As this 

represents a cohort of individuals, such populations typically have less variability than the 

“target population” of interest (e.g., the entire U.S. population). In modeling the target 

population, the overall heterogeneity can be seen as originating from multiple sources: first, 

there is heterogeneity between individuals within each population, we call this 

interindividual variability; next, there is heterogeneity between studies, this is called 

interpopulation variability; and on top of that, there is variability across different 

populations, which is defined as interhuman (or human) variability describing the variability 

in the target population.

For the model, we assume that human variability in response to chemical exposure, 

especially in the low exposure range, is primarily affected by two factors: (1) individuals 

exposed at background exposure levels have different background risks, and (2) differences 

in genetics (e.g., resulting in different “detoxifying” metabolic rates), life style (e.g., co-

exposures such as smoking that can exacerbate an individual’s response to a given chemical 

exposure), and other factors cause individuals to have different levels of sensitivity to the 

same exposure level, which affect individual risks. These causes of variability will also 

appear at interpopulation and interhuman levels. When we only have data at the population 

level (like most data reported in epidemiological studies), quantifying the interpopulation 

variability is an important first step to a full interhuman variability quantification.

To incorporate the interpopulation variability, we construct a Bayesian hierarchical model 

among different subpopulations for the parameters that represent background risk and 

response sensitivity. Most parametric exposure-response models for continuous data contain 

two to four parameters with different and varying biological relevance. For example, the 

simplest linear model has two parameters, intercept and slope, which well correspond to 

these two factors. However, the Power model and Hill model with more parameters also 

include equivalent parameters for the two factors. In this study, we demonstrate, through 

both an application to real data and a simulation study, that using Bayesian hierarchical 

structure on partial model parameters can quantify the distribution of the background risk 

and response sensitivity (represented by corresponding parameters) in various exposure-

response models, and it is an adequate approach to quantify variability across different 

populations.

The article is organized as follows: in Section 2, the fundamental methodology is outlined. 

Section 3 presents the results from an analysis of a set of studies using the proposed method. 

A simulation study is described in Section 4. Finally, Section 5 offers a comprehensive 

discussion.
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2. METHODOLOGY

We propose a Bayesian hierarchical model to quantify the variability and uncertainty in 

human populations with a focus on the low-exposure region. In particular, we fit an 

exposure-response model to data sets from different studies, where the subjects in the studies 

have the same or extremely similar endpoints and exposure metrics, and comparable external 

conditions, geographically, economically, etc., and build hierarchical structure over the 

parameters of interest (i.e., background risk and response sensitivity) to characterize their 

distributions across different populations. In the hierarchy, the higher-level distribution is 

used to estimate the distribution of relative risk at any given exposure level. The higher-level 

distributions describing the interpopulation heterogeneity will lead to heavier tailed 

distributions of relative risk, which will appropriately quantify the variability across 

populations and better estimate the interhuman variability.

2.1. Exposure-Response Modeling

The method assumes aggregated rather than individual data are available (a common 

situation in published epidemiological studies), and the data are from prospective cohort 

epidemiological studies consisting of count data. Such studies typically include exposure 

level, number of subjects, observed cases per exposure level, and adjusted relative risk. For 

such data, the mean value of observed cases is a product of adjusted expected number of 

cases and an exposure-response function, that is,

μ(di; β) = ei × f (di; β), (1)

where μ(di; β) represents the mean at exposure di; ei is the expected value of cases adjusted 

for demographics (e.g., person-years, age, sex, etc.); and f(di ; β) is an exposure-response 

function with a vector of parameters β representing relative risk due to exposure to a 

chemical of interest.

The cohorts used in this study all have an internal referent (i.e., the group with the lowest 

exposure d1), and the expected values are themselves estimated from the same data as the 

model parameters. To account for this in the model, we define f(di; β) = g(di ; β)/g(d1; β) 

(where g(·) is a common exposure-response function). This adjusts the models by dividing 

out the exposure contribution at reference group d1. This forces the fitted relative risk at the 

reference group to be 1. In addition, because the denominator is a constant given estimated 

model parameters, f(di; β) has the same mathematical format as the g(·).

To model ei when individual follow-up data are not available, we cannot define the 

relationship between the ei (expected value of other exposure groups) and e1 (expected value 

of the reference group). Consequently, we adopt a simplifying approach to quantify the 

relationship between ei and e1. Assuming e1 = o1, where o1 represents the observed cases in 

the reference group, we further assume that the ratio of ei′ (the expected values reported in or 

derived from summary data in published literature) and o1 is equal to the ratio of ei, and e1, 

that is:
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ei = e1 × ei′ o1 . (2)

It is common to use the Poisson distribution to model count data (i.e., number of cases) 

observed in unit time. We assume that the observed cases in each exposure group follow a 

Poisson distribution parametrized by the mean value expressed by Equation (1), i.e., oi ~ 

Poisson [μ(di; β)]. Therefore, by substituting Equation (1), the log-likelihood function, LL, 

can be defined as:

LL= ∑
i = 1

n
oi × log ei × f (di; β) − ei × f (di; β)

−log oi! ,
(3)

where i represents the ith exposure group and n is the total number of exposure groups. 

Substituting Equation (2) for ei, the log-likelihood function (Equation (3)) can serve as the 

basis for estimating e1 and parameters β in an exposure-response model f(di; β). Other 

parameters after the substitution in Equation (3) are known or estimated quantities directly 

from the literature, including di, oi, and ei, which are the reported exposure, observed case, 

and expected case number at exposure group i, respectively.

We are particularly interested in applying a Bayesian hierarchical model to quantify 

exposure-associated variability in relative risk represented by the exposure-response model 

f(di; β). The Hill model(9) is used as an example to demonstrate the hierarchical modeling 

methodology in this study and has been reparameterized as Equation (4). In this 

parameterization, the format of the parameter b represents the sensitivity of response and has 

a unit of “response/doseg.” This is the same as the coefficient of the dose term in the Power 

model (i.e., b in f(d) = a + b × dg) and similar to the unit of the slope parameter in the linear 

model:

f (d) = a + b × dg

1 + d
c

g , a > 0, b > 0, c > 0, g ≥ 0.5, (4)

where Equation (1) is related to Equation (4) by letting β = (a, b, c, g)’. From the Bayesian 

perspective, the model parameters are considered as random variables, and the exposure-

response model fitting is a process that estimates the posterior distribution of model 

parameters given data. This updating process is defined by Bayes’s theorem, which 

describes the posterior distribution as proportional to the data likelihood multiplied by the 

prior distribution over the parameters. For this particular case of the Hill model under the 

Poisson distribution assumption, the posterior distribution can be expressed in terms of 

model parameters as:
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P(a, b, c, g ∣ di, oi, ei) ∝ P(a, b, c, g)P(di, oi, ei ∣ a, b, c, g)

= P(a, b, c, g) ∏
i = 1

n
ei × a + b × dg

1 + d
c

g

oi

× exp −ei × a + b × dg

1 + d
c

g ,

(5)

where P(a,b,c,g) is the prior distribution of model parameters. Equation (5) serves as the 

basis for a Markov Chain Monte Carlo (MCMC) algorithm to estimate posterior distribution 

of the model parameters. After fitting the exposure-response model, a posterior predictive p-

value(10) (PPP) can be used to indicate if the model has an adequate fit.

2.2. Bayesian Hierarchical Structure

Bayesian methods have been widely applied in dose-response modeling research.(11–13) In 

this study, we propose to characterize the interpopulation variability through the background 

risk (i.e., relative risk at background exposure) and response sensitivity (i.e., response rate), 

which corresponds to placing a hierarchical structure over parameters “a” (risk at 

background exposure) and “b” (a response-sensitivity-equivalent parameter) in Equation (4). 

The first level of the hierarchy represents the study-specific estimate and the next level of the 

hierarchy is a distribution characterizing these parameters.

The Bayesian hierarchical structure over partial model parameters a and b is:

P (a j, μa, σa, b j, μb, σb, c, g ∣ d ji, o ji, e ji)
∝ P(d ji, o ji, e ji ∣ a j, b j, c, g)P(a j ∣ μa, σa)
P(b j ∣ μb, σb)P(μa, σa)P(μb, σb)P(c)P(g),

(6)

where j indexes the studies. As there is a reason to assume that the distribution of a and b is 

skewed with heavier right tails (i.e., fewer people have higher background risk and higher 

sensitivity of response to chemical exposure), we place a lognormal (LN) prior over these 

parameters, that is, P(aj ∣μa, σa) = LN(μa, σa) and P(bj ∣μb, σb) = LN(μb, σb). For the hyper 

parameters μa, σa, μb, and σb, we assume that these parameters are independent a priori, and 

place a uniform prior over a range of plausible values over each parameter. This assumes 

that there is no prior information on the parameters, beyond a range of plausible values. 

Parameters “c” and “g” in Equation (6) are not distinguished among studies so that no 

hierarchical structure is built over these two parameters. Consequently, the uniform priors 

P(c) and P(g) are placed over these two parameters with no preference on any value in the 

range. An important reason to use such hierarchical structure on partial parameters is that the 

factors represented by a and b are mostly related to the variability in low exposure, and 

parameters c and g are more affected by data points in the high-exposure range. This 
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structure can be easily expanded to building hierarchical structure over all four parameters or 

be reduced down to having only one parameter with hierarchical structure. The mathematical 

expression of the hierarchical structure over all four parameters is presented in the 

Appendix. Watanabe information criteria (WAIC) values(14) are calculated to compare 

alternative hierarchical models with regard to goodness of fit with adjustment for over-

fitting. It is important to note that, in this study, both the PPP and WAIC are considered 

together when evaluating the models, and it is not intended to rule out any model solely 

based on any one of the indicators.

2.3. Quantifying Variability

The posterior distribution of the parameters is sampled using MCMC simulation, and the 

population variability and uncertainty at any given exposure level is characterized by the 

distribution of relative risk calculated using the parameters’ posterior sample.

Instead of using the posterior sample of parameters of “a” and “b” for each individual study 

(i.e., aj and bj), the posterior samples of μa, σa, μb, and σb describing the distributions of “aj” 

and “bj” are used for generating samples of “a” and “b” that incorporate the population 

variability in these two factors. That is, each pair of posterior samples of μa and σa (or μb 

and σb) are used as parameters of the lognormal distribution to randomly generate “a” (or 

“b”), so that the interpopulation variability can be taken into account. The posterior sample 

size of “a” and “b” generated through this process is the same as the length of the MCMC 

chains. The posterior sample of parameters “c” and “g” from the MCMC process are directly 

used in relative risk calculation. The same approach is applied to the alternative hierarchical 

structures compared in Table II in Section 3.3. Whenever a hierarchical structure is built on a 

model parameter, the posterior sample of its corresponding hyper parameters is used to 

generate the posterior sample of that parameter, which is then used in calculating the 

distribution of relative risk (at any given exposure level).

3. DATA APPLICATION

3.1. Data Sets

The proposed approach is applied to a set of exposure-response data reported in 

epidemiological studies shown in Table I, including Sohel et al.(15) and Chen et al.(16) These 

studies reported or estimated average arsenic concentration in drinking water, observed 

numbers of deaths, adjusted relative risk and person-years at risk (if available). Sohel et al.
(15) employed Cox proportional hazards models to estimate the mortality risks in relation to 

arsenic exposure and adjusted the values for potential confounders, including age, sex, 

socioeconomic status, and education. However, Chen et al.(16) adjusted the relative risk 

values for age, sex, smoking status, and educational attainment. Both Sohel et al. and Chen 

et al. reported the numbers of “cardiovascular disease” and “circulatory system” deaths of 

prospective cohort studies in adult populations exposed to arsenic-contaminated well water 

in different locations (Matlab and Araihazar) in Bangladesh. Although the endpoints 

reported in these two studies are not exactly congruent, these studies are similar in many 

respects such as the exposure measure and duration. Therefore, for the purpose of 
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demonstrating the proposed methodology, the endpoints are close enough to be employed 

for population variability quantification.

3.2. Prior Specification and MCMC Sampling

As an important component in Bayesian analysis, prior distribution should be properly 

selected. In this study, we use uniform distribution as priors to set a fairly large range for 

each parameter (including hyper parameters) but without specifying preference on any 

values in the corresponding range (i.e., flat prior, all values for each parameter in the 

corresponding range are equally likely). For the parameters a and b where the hierarchical 

structure is used, the hyper priors for the parameters in the lognormal distributions are 

specified as μa ~ Uniform(−1,1), σa ~ Uniform(0, 2), μb ~ Uniform(−3, 3), and σb ~ 

Uniform(0, 2). Based on Monte Carlo simulation, these settings allow parameter a to vary 

from 10−4 up to at least 1.3 × 104 and b to be approximately in the range of (9 × 10−6, 3 × 

104). Using uniform distribution as a prior for variance parameters (e.g., σa and σb) was 

proposed and discussed in Gelman et al.(10) However, priors for e1 in Equation (2), and the 

parameters c and g with no hierarchical structure are specified as e1 ~ Uniform(0,1000), c ~ 

Uniform(0, 20), and g ~ Uniform(0.5, 20). The proposed hierarchical model with prior 

specifications is graphically shown in Fig. 1.

For the purpose of comparison, some alternative hierarchical structures were also employed 

and the results obtained are compared with the ones from the proposed hierarchical model 

on partial parameters. When hierarchical structure is only used for a or b, uniform 

distribution is also specified as a ~ Uniform(0, 5) and b ~ Uniform(0, 20). When hierarchical 

structure is additionally placed on parameters c and g (i.e., the model presented in the 

Appendix), the hyper priors for the parameters are specified as μc ~ Uniform(−3, 3), σc ~ 

Uniform(0, 2), μg ~ Uniform(−3, 3), and σg ~ Uniform(0, 2). Again, the main purpose of 

using uniform distribution as prior is to set a reasonable boundary on the parameters without 

giving any preferences. We also examined another flat prior option, normal distribution 

Normal(0,10002) with the same lower and upper bounds corresponding to the uniform 

distributions, and we obtained almost identical estimates for the quantities of interest.

The proposed methods are programed in R (Version 3.3.1) using RStan.(18) The MCMC 

sampling process consisted three different Markov chains sampled for 20,000 iterations. The 

first half of each chain is disregarded as burn-in, which results in a posterior sample size of 

30,000. The convergence of the MCMC sampling is judged by the potential scale reduction 

statistic, R̂ (19) provided in the output of RStan. The values of R̂ reported indicate that all 

chains converged.

3.3. Results

The posterior distribution of relative risk estimates at 10 μg/L is calculated using the 

posterior sample of model parameters. We focus on 10 μg/L as it is the US EPA’s current 

regulatory standard as well as WHO’s recommended limit on inorganic arsenic 

concentration in drinking water. The 5th, median, and 95th percentile of the relative risk 

estimates at the low-exposure level for the Hill model using the proposed hierarchical model 

are reported in Table II (listed as H-ab). For comparison purposes, the corresponding 
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estimates for single study and alternative hierarchical structures are also calculated and listed 

in the table, including (1) no hierarchical structure on any parameters (i.e., H-0), (2) 

hierarchical structure only on parameter “a” (i.e., H-a), (3) hierarchical structure only on 

parameter “b” (i.e., H-b), (4) hierarchical structure on all model parameters (i.e., H-all), (5) 

single data set from Sohel et al. (i.e., S-1), and (6) single data set from Chen et al. (i.e., S-2). 

In addition to the Hill model, the same quantities assessed using the linear model f(d) = a + 

b × d, a > 0, b > 0, and the Power model, f(d) = a + b × dg, a > 0, b > 0, g ≥ 0.5 are provided 

in Table II. The WAIC values were calculated for the alternative hierarchical models and 

reported in Table II as well. In addition, the PPPs for the various combinations of model/

hierarchical structure are reported in Table III and a description on how the PPPs were 

calculated is provided in the table caption.

From the tables, we can find that the Hill model has higher PPP values (indicating a better 

fit) and WAIC values (posterior predictive density adjusted for overfitting, indicating a 

nonfavorable model selection) than the Power and linear models.

There are two main reasons for this result: (l) the Hill model with four parameters has a 

more flexible shape to fit the data than the Power and linear models, which do not fit the 

data well, and, (2) as the model has four parameters and there are a limited number of 

exposure groups, the variation in the posterior sample of the Hill model make the WAIC 

value higher than the Power and linear models. As demonstrated by the Power and Linear 

models, the distribution of estimated relative risk is wider (mainly the upper bound is higher) 

than the counterpart estimated from a single population in a study. As shown in Table II, the 

distribution of relative risk estimated from the hierarchical structure on the Hill model is 

smaller than the corresponding value estimated from the single Chen et al. study. The reason 

again is that the limited data points increased the estimation uncertainty for the Hill model, 

but when studies are allowed to share information through the hierarchical structure, this 

uncertainty is reduced.

4. SIMULATION STUDY

We propose a simulation study to test if the hierarchical structure on partial model 

parameters can adequately quantify the variability in relative risk with a focus on low 

exposures and investigate the effect of the number of studies on the estimate of population 

variability.

4.1. Study Design

We again use the fundamental assumption that the human variability is jointly caused by two 

factors: the variability in risk at background exposure and in the sensitivity of human 

response, which can be explicitly represented by the two parameters in the linear model, the 

model chosen to serve as the “true” model for simulating data sets. As this study focuses on 

examining how well the proposed hierarchy can quantify the variability over the background 

and slope of the response, the linear model is chosen to avoid introducing uncertainty and 

variability represented by other model parameters. In the simulation study, some modeling 

assumptions and settings used in the above data analyses can be simplified and will be 

explained in detail in the description of the simulation study below.
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The linear model f(d) = a + b × d, a > 0, b > 0, with the distributions: a ~ LogNormal(0, 

0.25) and b ~ LogNormal(1, 0.75) (exposure d is on a normalized scale, i.e., between 0 and 

1), is used to generate exposure-response data to describe the relationship between arsenic 

concentration and relative risk. The reason to use these two specified distributions for the 

model parameters is that the resulting relative risks of death from cardiovascular diseases 

associated with arsenic exposure through drinking water are compatible to the values 

reported in recent epidemiological studies.(15–17,20) As the relative risk is a measurement 

calculated based on groups of subjects, each specified linear curve quantifies the relationship 

in a population (i.e., all subjects in a study) and the prescribed distributions of a and b are 

used to characterize the variability across populations (i.e., across studies). With the known 

distribution of model parameters and model settings, we can use extensive Monte Carlo 

simulation to accurately approximate the distribution of relative risk at any exposure. The 

process of the entire simulation study is: we first simulate a large number of study data sets 

from this true curve with known interpopulation variability, then use the hierarchical 

structure on partial parameters proposed in this study to quantify the variability, and finally 

compare with the known distribution to determine the accuracy of the proposed method.

The exposure level, relative risk, and observed cases are simulated to form simulation data 

sets. We assume that there are five exposure groups in the range of 0–400 μg/L in each study. 

These five groups are separated as: 0–10 μg/L, 10–50 μg/L, 50–100 μg/L, 100–200 μg/L, 

and 200–400 μg/L. The five exposure levels in each study are independently and randomly 

generated from these five uniform distributions specified by these five intervals. Exposure 

levels are then transformed to the (0,1) interval by dividing by 400.

To simulate relative risk, values of “a” and “b” are randomly sampled from the true 

lognormal distribution [i.e., a ~ LogNormal(0, 0.25) and b ~ LogNormal(1, 0.75)]. Then, 

this pair of parameter values and the exposure vector are used to calculate the relative risks 

for the five exposure groups by using the linear model rri = (a + b × di)/a, which ensures that 

the relative risk is equal to 1 at the 0 exposure level (rather than at the lowest exposure group 

commonly reported in epidemiological studies). This relative risk, rri, is used to generate a 

randomized relative risk as rri′ ∼ LogNormal log(rri), σ . We consider three different situations: 

(1) no randomness (i.e., σ = 0) in the relative risk; (2) small randomness (i.e., σ = 0.05); and 

(3) large randomness (i.e., σ = 0.25). This variance parameter basically represents the 

randomness caused jointly by the interindividual and interpopulation heterogeneity. When σ 
is 0, it means that interpopulation variability can be perfectly described by the “true” linear 

model with specified distributions of parameters. However, σ = 0.25 means that great 

additional interpopulation and interindividual variability have been incorporated in the 

simulated relative risk values.

The third vector simulated is the observed number of cases in each exposure group. In 

epidemiological studies, the observed cases in each group are related to the total number of 

subjects and the relative risk of that exposure group. Therefore, we use the following steps to 

randomly generate the case numbers:

1. Generate 1,000 values from a lognormal distribution LogNormal(3.5, 1.5) (where 

400 μg/L is higher than the 95th percentile).
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2. Bin these subjects into previously specified exposure groups, i.e., 0–10, 10–50, 

50–100, 100–200, and 200–400 μg/L and count the number of cases in each 

group, ni.

3. Draw the number of cases randomly from a Poisson distribution with mean equal 

to ni × rri′ for each exposure group to form the last vector in a simulated data 

set, the observed cases, oi.

The first step takes sampling variability into account. The number of values generated from 

the lognormal distribution (i.e., the sample size) is closely related to the sampling variability. 

The larger the sample size is, the more certain the proportion of the sample size of each 

group is (i.e., the smaller the sampling variability among exposure groups is). The reason to 

choose 1,000 is that it is close to the total number of observed cases in Sohel et al.,(15) one 

of the studies analyzed in Section 3. The last step above to generate observed case number 

from a Poisson distribution is essentially building individual-level uncertainty and variation 

in the simulated data sets. That is, greater relative risk value leads to higher variation in the 

simulated number of observed cases, and this is aligned with the common situation that 

larger variation is usually observed in the highest exposure group. The following two vectors 

are two exemplary sets of observed case numbers generated through this process: [219, 495, 

250, 312, 261] and [190, 456, 121, 158, 93]. We need to point out that the number of cases 

in each exposure group basically determines how much weight this data point (i.e., this 

exposure group) contributes to the model fitting process; therefore, the distribution of the 

cases among exposure groups is more directly related to the model fitting than the total 

sample size.

These three vectors together can form a complete simulation data set for exposure-response 

modeling, but the model approach is slightly different from the one stated in the previous 

section. The main reason for the difference is that the expected number of cases in each 

exposure group in the simulation study is independently generated rather than estimated 

based on the assumption that supports Equation (2). Therefore, the expected cases can be 

simply calculated from the observed data vector and the relative risk vector as ei = oi/rri′ and 

substituted for the corresponding parts in Equation (3) for model parameter estimation. The 

simulation considers three scenarios. The first scenario is that each set of studies includes 

two simulated data sets representing two different populations. Then, the proposed 

hierarchical structure is applied to quantify interpopulation variability via the Hill model, 

Power model, and linear model. The remaining two scenarios have five studies and eight 

studies being included for hierarchical modeling, respectively. Five hundred sets of studies 

are used in each scenario, so, for instance, for the two-study scenario, 1,000 different data 

sets were simulated, while 4,000 data sets were randomly generated in total for the eight-

study scenario.

The “true” distribution of relative risk at a given exposure is characterized by Monte Carlo 

simulation. From the distribution a ~ LogNormal(0, 0.25) and b ~ LogNormal(1, 0.75) 

previously specified, 100 million samples were generated for “a” and “b” each. For the 

exposure at level 10 μg/L, 100 million values of relative risk rr10 μg/L, can be calculated. 

These 100 million values are further used as the median in the lognormal distribution to 

simulate 100 million relative risk rr′10 µg/L for each of the three situations: no randomness 
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(NR), small randomness (SR), and large randomness (LR). We believe that the 100 million 

samples can quite accurately characterize the distribution of the relative risk, and therefore 

the median and 95th percentile estimated from the 100 million sample are used as “true” 

value. For example, at 10 μg/L, the true median and 95th percentile of relative risk for all 

three situations is 1.0679 and 1.2494 (for NR), 1.0774 and 1.2725 (for SR), and 1.0879 and 

1.6756 (for LR).

4.2. Results

The simulated data sets from the known variability in relative risk are used to test how 

accurately the proposed hierarchical model can quantify the variability, especially in the 

low-exposure region (i.e., 10 μg/L as an example). The accuracy of the estimates is evaluated 

by the following log ratio:

log
Qest
Qtrue

, (7)

where Qest represents the 50th (median) or 95th percentile of the estimated distribution of 

relative risk, and the Qtrue represents the corresponding true values calculated in the previous 

section. Thus, positive log ratio means that the estimated value is larger than the true value, 

and negative log ratio means that the estimated value is smaller. If the log ratio is zero, then 

the estimated value is equal to the true value. The closer to zero the log ratio is, the more 

accurate the estimate is.

The mean and standard deviation of the log ratio of the median and 95th percentile based on 

the 500 repetitions for each model/scenario combination are listed in Table IV for all three 

situations considered. The 500 log ratios for each combination are also graphically shown in 

Figs. 2–4 for the three situations.

The results show that as the number of studies included increased, both the median and 95th 

percentile estimates are closer to the true value, and the variance in the estimates decrease. 

The majority of the log ratios are positive, indicating that the estimated values are typically 

larger than the true value. For the 95th percentile, higher estimated value is acceptable 

because the higher value will usually lead to a more conservative regulation on the exposure. 

As shown in both Table IV and Figs. 2–4, the Power model and Hill model can generally 

provide estimates as adequate as the linear model even if it is the true model used to generate 

data sets.

5. CONCLUSION AND DISCUSSION

As suggested by both the simulation study and application to real data, the proposed 

hierarchical model on partial model parameters can be used to adequately quantify 

variability across different populations.

The proposed hierarchical model on partial parameters focuses on quantifying the variability 

via quantifying the distribution in risk at background exposure and the sensitivity of 
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response, which are the two main factors that are mostly relevant to the variability in 

responses at low exposures. However, we need to note that the sensitivity of response in the 

Hill model (Equation (4)) may not be precisely represented by the parameter “b” solely if we 

define the sensitivity of response as the first derivative with respect to dose, which is 

∂ f
∂d = bgdg − 1

((d c)g + 1)2
. In other words the sensitivity of response may be jointly characterized by 

all three other parameters in the Hill model except the background parameter “a”. Therefore, 

we also investigated the hierarchical structure over all of the four parameters in the 

epidemiological data application (in Tables II and III) and simulation study (in the 

Appendix). Given these results in Table II, we can find that the 95th percentile of relative 

risk estimated from the “H-all” model is higher than the one estimated from the “H-ab” 

model. Meanwhile, the log-ratio of the 95th percentile of the “H-all” model in the two-study 

situation displayed in Fig. A.1 is much higher than its counterpart estimated using the “H-

ab” model. These two pieces of evidence demonstrate that when the number of studies 

included in an analysis using a hierarchical model is small, the width of the 90th percentile 

interval can be significantly affected by the number of parameters with a hierarchical 

structure. On the other hand, when there are sufficient studies included in an analysis using a 

hierarchical model (i.e., the five- and eight-study cases in Fig. A.1), the difference in the 

results estimated from the two hierarchical structures is very limited. Therefore, it is not 

necessary to build a full hierarchical structure on all model parameters when we only focus 

on the low-exposure range. One reason for using the partial model is that, when we focus on 

the human data in low exposure, it is very likely that the dose is very small (relative to 

parameter “c”), and parameter “g” is often close to 1, which makes the derivative (i.e., the 

sensitivity of response) mainly depend on “b”. The similar results of the five- and eight-

study situations shown in Fig. A.1 well support this argument. Another advantage of the 

proposed hierarchical structure on the parameters of interest (i.e., “a” and “b”) is that this 

method is less model dependent, which has a two-fold meaning. First, most of the exposure-

response models contain the two parameters representing the background and sensitivity. 

Second, as shown in Tables II and IV, the hierarchical structure on partial parameters 

provides quite similar distribution estimates of relative risk in various situations examined 

regardless of the format of exposure-response models.

The available exposure groups in the studies being analyzed has a very important impact on 

model selection and the variability quantification. As suggested by the data analysis results 

in Section 3.3, insufficient data points (number of exposure groups smaller than the number 

of model parameters) can introduce significant estimation uncertainty into the final estimates 

of variability in relative risk. However, models with more parameters (e.g., the Power model 

and Hill model) are more flexible to fit various shapes of exposure-response relationship. In 

addition, more model parameters make the estimates at low exposure levels more resistant to 

the disturbance caused by the responses at high exposure levels. As shown in the simulation 

study (Table IV), the accuracy of the linear model is generally no better than the Power 

model or Hill model, even if the linear model is the “true” model for generating simulation 

data sets. But again, the selection of exposure-response models is largely limited by the 

available number of exposure groups.
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The results suggest that as the number of studies increases, the uncertainty in estimates 

decreases. When the number of studies is small, the estimated distribution is wider than the 

true distribution. From a conservative perspective, a limited number of studies will not hurt 

risk assessment. Theoretically, to include more studies is always beneficial for increasing the 

accuracy of estimation, but the improvement in accuracy is clearly reduced when the number 

of studies included reaches five. This suggests that to balance the cost and the effectiveness 

of reducing uncertainty and improving accuracy, five studies might be a good option. 

However, we need to note that we assumed each data set had five exposure groups in the 

simulation study, so it should be expected that more studies are needed when fewer exposure 

groups are contained in each study.

Prior and hyper prior distribution can have potentially large impacts on the distribution 

estimation, that is, wider prior distribution may lead to wider distribution of the relative risk 

estimates. In this study, we examined two possible options of flat prior, the uniform 

distribution and truncated normal distribution with very large variance, to set a boundary on 

the model parameters. Because such settings on boundaries were kept identical in various 

situations and scenarios we examined, the results of comparison are robust to the prior 

specifications. However, priors should be carefully selected and tested for sensitivities in 

practice.

Finally, we also need to note that what has been focused on in this study is the 

interpopulation variability, which is only a part of the interhuman variability. When data are 

only available at the population level like the examples we employed in article, the 

hierarchical model is useful to probabilistically quantify the variability among different 

populations. However, if more detailed information regarding pharmacokinetic and/or 

pharmacodynamics in humans is available, variability at the individual level also should be 

incorporated and quantified.(3) One source of uncertainty not considered in this study is 

exposure uncertainty, which is an important but difficult factor in exposure-response 

assessment using epidemiological data. In our next study, we will focus on investigating how 

exposure uncertainty will influence the variability and uncertainty in risk estimates.
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APPENDIX

The Bayesian hierarchical structure over all four model parameters extended from Equation 

(6) can be expressed as follows:

P(a j, μa, σa, b j, μb, σb, c, μc, σc, g j, μg, σg ∣ d ji, o ji, e ji)

∝ P(d ji, o ji, e ji ∣ a j, b j, c j, g j)P(a j ∣ μa, σa)P(b j ∣ μb, σb)

P(c j ∣ μc, σc)P(g j ∣ μg, σg)P(μa, σa)P(μb, σb)P(μc, σc)

P(μg, σg),
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where P(cj∣μc, σc) = LN(μc, σc) and P(gj∣ag, σg) = LN(μg, σg) are both assumed to be 

lognormal distributions. For the hyper parameters μc, σc, μg, and σg, we assume that these 

parameters are independent a priori, and place a uniform prior same as the corresponding 

ones for parameter “b” in Equation (6). All the remaining parameters have the same 

meaning as in Equation (6). This model structure was also employed in the simulation study. 

Similarly, the mean and standard deviation of the log ratio of the median and 95th percentile 

estimated from this model are listed in Table A.I. In addition, the log ratios estimated from 

the “H-ab” and “H-all” structures of the Hill model are compared and graphically shown in 

Fig. A.1 in the Appendix.

Table A.I.

Mean and Standard Deviation of the Log Ratio Estimated from the Hill Model with 

Hierarchical Structure on All Parameters

Median 95th Percentile

2 Studies 5 Studies 8 Studies 2 Studies 5 Studies 8 Studies

NR Hill-all −0.0147 −0.0037 −0.0026 0.9611 0.2439 0.1346

(0.0293) (0.0218) (0.0167) (0.2705) (0.1869) (0.1423)

SR Hill-all −0.0234 −0.0128 −0.0119 0.9807 0.2555 0.1272

(0.0315) (0.0226) (0.0172) (0.2732) (0.1911) (0.1441)

LR Hill-all −0.0433 −0.0484 −0.0525 1.1954 1.1302 1.1651

(0.0546) (0.0403) (0.0303) (0.6287) (0.7414) (0.7194)
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Fig. 1. 
The Bayesian hierarchical structure with specifications for the priors. Here, Unif(m,n) is a 

uniform distribution from m to n, and LN(μ, σ) is a lognormal distribution with mean and 

standard deviation on a log scale as μ and σ, respectively. Orange boxes represent priors and 

blue boxes represent unknown parameters (color visible in on-line version).
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Fig. 2. 
The boxplot for the ratio of median and 95th percentile estimated from the Hill model, 

Power model, and linear model to the true median and 95th percentile, respectively, for the 

situation with no randomness (NR) in the simulated relative risk values.
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Fig. 3. 
The boxplot for the ratio of median and 95th percentile estimated from the Hill model, 

Power model, and linear model to the true median and 95th percentile, respectively, for the 

situation with small randomness (SR) in the simulated relative risk values.
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Fig. 4. 
The boxplot for the ratio of median and 95th percentile estimated from the Hill model, 

Power model, and linear model to the true median and 95th percentile, respectively, for the 

situation with large randomness (LR) in the simulated relative risk values.
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Fig. A.1. 
The boxplot for the ratio of median and 95th percentile estimated from the two hierarchical 

structures (H-ab and H-all) of the Hill model to the true median and 95th percentile, 

respectively, for the three situations with none, small, and large randomness (NR, SR, and 

LR) in the simulated relative risk values.
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Table I.

CVD Mortality and Exposure Data Used

Exposure Group 1 2 3 4 5

Sohel et al.:(15) Table II. Endpoint = “cardiovascular disease” mortality

Arsenic water concentration (μg/L) 3.8 25.8 90.6 214.7 427.5

Observed CVD deaths 129 153 476 388 152

Adjusted relative risk 1 1.03 1.16 1.23 1.37

Person-years NR NR NR NR NR

Chen et al.:(16) Table II (model 2). Endpoint =“circulatory system disease” mortality

Arsenic water concentration (μg/L) 3.7 35.9 102.5 265.7 –

Observed CVD deaths 43 51 41 63 –

Adjusted relative risk 1 1.21 1.24 1.46 –

Person-years 20064 19109 18699 19380 –

Note: “NR” in the Sohel et al.(15) study stands for “not reported.” The arsenic water concentration values in the Chen et al. study were mean 
concentration value for each exposure group reported by the authors. The arsenic water concentration and exposure data used in Sohel et al. were 
reported in detail in Rahman et al.(17) So, the detailed arsenic exposure and concentration data were employed to estimate mean concentration 
values for the exposure strata based on an assumption that the exposure through drinking water is lognormally distributed. The observed CVD 
death cases and adjusted relative risk values in both studies are reported values directly collected from the literature. The expected number of cases 
in both studies, which is used as ei′ in Equation (2), can be calculated as oi/arri, where oi and arri are the observed case numbers and adjusted 

relative risk value in this table, respectively.
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Table II.

Relative Risk at 10 μg/L Estimated from Various Structures using Hill Model, Power Model, and Linear 

Model

Hill Model Power Model Linear Model

5th 50th 95th WAIC 5th 50th 95th WAIC 5th 50th 95th WAIC

H-ab 1.000 1.118 1.418 73.07 1.006 1.086 1.631 65.93 1.008 1.259 2.520 67.16

H-0 1.000 1.118 1.330 73.44 1.006 1.019 1.035 65.11 1.003 1.006 1.009 66.25

H-a 1.000 1.132 1.309 73.22 1.004 1.026 1.406 65.57 1.001 1.007 1.152 66.36

H-b 1.000 1.089 1.315 72.44 1.007 1.034 1.298 65.26 1.007 1.122 2.075 67.13

H-all 1.000 1.021 3.392 74.54 1.002 1.100 16.47 65.95 – – – –

S-1 1.000 1.086 1.273 – 1.004 1.017 1.032 – 1.002 1.005 1.008 –

S-2 1.000 1.091 1.506 – 1.004 1.027 1.067 – 1.002 1.010 1.021 –

Note: H-0 represents the model has no hierarchical structure on any parameters; H-a and H-b represents hierarchical structure only on parameter 
“a” or “b”, respectively;H-ab represents the model with hierarchical structure on both “a” and “b”;H-all has hierarchical structure on all model 
parameters; S-1 and S-2 are single data sets from Sohel et al. and Chen et al., respectively. WAIC was calculated to compare various hierarchical 
models, but not for individual studies. For the linear model, the H-ab model is the same as the H-all model, so the estimated values are not reported 
for H-all.
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Table III.

Posterior Predictive p-Values for Various Structures of Hill Model, Power Model, and Linear Model

Hill Model Power Model Linear Model

S-1 S-2 S-1 S-2 S-1 S-2

H-ab 0.219 0.201 0.067 0.116 0.143 0.061

H-0 0.333 0.234 0.066 0.088 0.704 0.805

H-a 0.122 0.077 0.062 0.109 0.100 0.089

H-b 0.223 0.211 0.059 0.027 0.139 0.180

H-all 0.313 0.141 0.071 0.097 – –

Single 0.499 0.613 0.008 0.109 0.136 0.167

Note: The posterior predictive p-value (PPP) is calculated using the method described in Gelman et al.:(10) Pr[T(y, θl) > T(yPred,l, θl)], that is, the 
probability that the test statistic T(·) calculated using observed data is larger than the same statistic obtained using predicted data. In our case, the 

test statistic is the log-likelihood estimated based on the assumed Poisson distribution. y and ypred represent, respectively, the observed data (e.g., 
case numbers) and predicted case numbers, which were generated using the posterior sample of estimated parameters. Under a Bayesian 
framework, the probability can be numerically approximated by counting the number of sets of posterior samples that satisfy the inequality out of 
the entire posterior sample space. Using such a method, a very large or very small PPP means that it is very likely to see a discrepancy in predicted 
data, further indicating a poor fitting. Therefore, a PPP value within the range from 0.05 to 0.95 indicates an adequate fit. For the linear model, the 
H-ab model is the same as the H-all model, so the PPP values are not reported for H-all.
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Table IV.

Mean and Standard Deviation of the Log Ratio Estimated using Various Number of Studies

Median 95th Percentile

2 Studies 5 Studies 8 Studies 2 Studies 5 Studies 8 Studies

NR Hill −0.0042 −0.0019 −0.0019 0.4429 0.2469 0.1471

(0.0321) (0.0219) (0.0166) (0.2088) (0.1894) (0.1415)

Power 0.0003 0.0015 0.0011 0.4899 0.2469 0.1471

(0.0338) (0.0225) (0.0172) (0.2147) (0.1950) (0.1451)

Linear 0.0014 0.0020 0.0014 0.4891 0.2453 0.1463

(0.0334) (0.0226) (0.0171) (0.2127) (0.2004) (0.1455)

SR Hill −0.0113 −0.0102 −0.0106 0.4372 0.2127 0.1180

(0.0344) (0.0225) (0.0173) (0.2307) (0.1930) (0.1454)

Power −0.0064 −0.0064 −0.0071 0.4905 0.2373 0.1345

(0.036) (0.0235) (0.0179) (0.2339) (0.2002) (0.1502)

Linear −0.0073 −0.0069 −0.0074 0.4720 0.2304 0.1312

(0.0338) (0.0224) (0.0171) (0.2110) (0.2028) (0.1475)

LR Hill −0.0167 −0.0160 −0.0178 0.0952 −0.0596 −0.1253 

(0.0770) (0.0526) (0.0401) (0.5262) (0.3083) (0.2232)

Power 0.0056 −0.0011 −0.0060 0.3010 0.0388 −0.0617 

(0.0763) (0.0518) (0.0390) (0.4876) (0.2974) (0.2220)

Linear −0.0142 −0.0142 −0.0153 0.2108 −0.0145 −0.0998 

(0.0377) (0.0265) (0.0200) (0.2221) (0.2074) (0.1638)

Note: The standard deviation for each model/number of studies combination is provided in parentheses. NR, no randomness; SR, small 
randomness; LR, large randomness.
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